Logo Coronavir.org

Coronavir.org

Site de veille et d'information sur le nouveau coronavirus SARS-COV-2 et la maladie associée COVID-19

Actualités et recherches en cours

We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: we prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameter...

We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: we prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameter...

We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: we prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameter...

The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find th...

The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find th...

The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find th...

We develop a new method to locally cluster curves and discover functional motifs, i.e.~typical ``shapes'' that may recur several times along and across the curves capturing important local characteristics. In order to identify these shared curve portions, our method leverages ideas from functional data analysis (joint clustering and alignment of curves), bioinformatics (local alignment through the extension of high similarity seeds) and fuzzy c...

We propose an on-chip mid-infrared (MIR) photonic spectroscopy platform for aerosol characterization to obtain highly discriminatory information on the chemistry of aerosol particles. Sensing of aerosols is crucial for various environmental, climactic, warfare threat detection, and pulmonary healthcare applications. Further, there are a number of unintended situations for potential exposure to bioaerosols such as viruses, bacteria, and fungi. F...

Important : Le contenu diffusé sur Coronavir.org ne doit jamais remplacer les conseils d'un médecin ou des autorités de santé locales.